=		Car cannot b	n		Name	KEY	
		at 2.0 second	Worksł	neet #1			If he slaw dam
If he speeds up:	50 m	25 m	Acceleration	+ Projectiles			In find when the steps
$\Delta x = \frac{1}{2} (6^{m/s^2}) (2_s)^2 + (18^{m/s}) (2_s)$	D	1 1 1 1 1	10 / AD I	21 1		1: -111	0 = (-3s)(t) + 18 %
12=41m<75m	has turne ahead of the stude speed up	the car's current ent does not want	vill turn red in 2 position and is to end up in the down at 3 m/s	2.0 seconds. The 25 m in length (experiment) intersection at 2. Can the student	(image above) the time of t = ent avoid the in	starts exactly 50 n	1 + 65
XX I						2	in the infanction
	their ma	-m race, accelerat ximum speeds, whene simultaneously	nich they each	maintain for the	rest of the rac	r 3.00s to attain jour	
	a.	Draw a single pos	ition vs. time g	raph that tracks	the motion of	each runner.	
LAURA		What is the maxim	num acceleratio	on of each spring		U EATHER	2 3 10.45
cold into the parts; alleles	about and speed	Laura 5.3	m/s^2	Heather 3.7	m/s^2	Jum= 1 (a)(35)+	(a)(3s) (7.4s)
Dx=2ct+v,t Dx=vt		What are their res	pective maxim	um speeds?	,	a=3,77/s y=(3,7)(3)=1	1.2 Mz
$V = at + v_0$ $O(m^2 \frac{1}{2}(a)(as)^2 + (a)(a)(8.45)$		Laura 10.6	m/s	Heather 11.2	m/s	$\Delta x = \frac{1}{2}(3,7)(3s,$	14 (11.2)(35)
n= 5.3 m/s		Which sprinter is Lawa by	26		by how much?	SX = 50-25M	
$V = (5.3 \text{ m/s})(2s) = 10.6 \text{ m/s}^2$ $\Delta X = \frac{1}{2} (5.3 \text{ m/s})(2s)^2 + (10.6 m/s$	(4s) e.	What is the maxim	num distance by	y which Heathe	r is behind Lar	ura, and at what i) Core i) Shallot behind	
1x = 55m		4.50 m	at $t = 5$	s alu	elevating, she	is distlest behind	
3.	A stone point B,	is thrown vertical 3.0 m higher than	ly upward. On	its way up is pa	asses point A	with a speed v, and	i
$\sqrt{\frac{2}{5}} = \sqrt{\frac{2}{5}} + \frac{2ab}{2ab}$ $(\frac{1}{2}v)^{2} = (\sqrt{2})^{2} + 2(-9.37)(\frac{3}{5})(\frac{3}{5})a.$ $\sqrt{\frac{2}{5}} = \frac{3}{5}$ b.	Calcula 8.85	te the speed v.					
V=0.0)	C-11	. 41	dalet massles 11	4541	i		
b.	1.0	m ($y = (7.85)^{7}$	the stone above $(2 + 2(-9.3)\%)$	re point B.		
			Sn=1	m			

- 36=(2160,50)(E) t= 2.67s
- 4. A placekicker must kick a football from a point 36.0 m (about 40 yards) from the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 21.0 m/s at an angle of 50.0° to the horizontal.
 - (a) By how much does the ball clear or fall short of clearing the crossbar?
- = 1(-9.8 m/s2)(2.675) + (2/5, m 50)(2.675)+5.0
- (b) Does the ball approach the crossbar while still rising or while falling? Explain:

$$0 = (-9.8 \, \text{m/s}^2)(t) + (21 \, \text{sm} \, 50)$$

$$t = 1.64 \, \text{s}$$

$$1.64 \, \text{s} < 2.67, \, \text{so} \, \text{ball already remarks and is Stelling dem.}$$

- Prove that the expression for the maximum range of a projectile in terms of only Vo, g and θ would be:
- $X_{\text{MAX}} = \frac{v_o^2 \sin(2\theta)}{g}$ $\int_{0}^{\pi} \frac{1}{2} \left(-\frac{g}{2}\right) \left(\frac{t^2}{t^2}\right) \frac{1}{2} \left(\frac{1}{2} \int_{0}^{\pi} \frac{dt}{dt}\right) \left(\frac{t}{2}\right) \frac{1}{2} \left(\frac{1}{2} \int_{0}^{\pi} \frac{dt}{dt}\right) \left(\frac{t}{2}\right) \frac{1}{2} \left(\frac{1}{2} \int_{0}^{\pi} \frac{dt}{dt}\right) \frac{1}{2} \left(\frac{1}{2} \int_$
- by using this equation? $\frac{1}{2}gt' = V_0 \sin \theta t$ $t = \frac{2V_0 \sin \theta}{g} \left(V_0 \cos \theta \right) = \frac{2V_0^2 \sin \theta \cos \theta}{g} = \frac{2V_0^2 \sin \theta \cos \theta}{g} = \frac{2V_0^2 \sin \theta \cos \theta}{g}$
- SX=Vt
- 6. A student stands near the edge of a 383 m high cliff, shooting his basketball at a 40 degree angle above horizontal and with an initial velocity of 10.7 m/s.
 - (a) At what angle will it enter the water? 5.34
 - (b) At what velocity will it enter the water? 87.6

2197

a bit runding