Test Prep Worksheet

Simple Harmonic Motion

1. A mass is attached to a spring on a frictionless, horizontal surface. When it's set into oscillation, its period is T. An equal mass collides head-on with this mass, and the two masses stick together. The oscillation period is now:

a.	Т
b.	√(2)*T
c.	2T
	(S) (S) (S)

T=225 /1/x

(J2)(2n)(Jm)

Questions 2-4

A 2kg mass oscillates vertically at the end of a spring according to:

$$x(t) = 4 \sin \left(\frac{\pi}{6} t + \frac{\pi}{8} \right)$$

2. The period of oscillation is:

3. The spring constant has a value in N/m of:

a.
$$8\pi^2/9$$

b.
$$72\pi^2$$

12

 $\int -125$ M = 2 ky4. The maximum kinetic energy of the mass is:

b.
$$(2\pi/3) J$$

(e.
$$(4\pi^2/9)$$
)

$$V(t) = \frac{4\pi}{6} \cos\left(\frac{r}{6}t + \frac{r}{8}\right)$$

$$V = \frac{4\pi}{6} \cos\left(\frac{r}{6}t + \frac{r}{8}\right)$$

$$\cos = 0$$

$$=\frac{4\pi^2}{9}J$$

- 5. A mass m is attached to a light string of length L, making a simple pendulum. It is displaced an angle θ from the vertical and released at t=0. Directly below the pivot of the pendulum is a stationary second mass m equal to the first, attached to a spring of constant k on a frictionless, horizontal surface. When the first mass collides with the stationary mass, the first mass detaches from the string and sticks to the second mass.
 - a. At what time will the spring first reach its maximum compression?
 - b. Find the amplitude of the spring oscillations

- 6. Two equal mass *m* connected by a light string are currently at rest on a frictionless surface inclined at an angle θ. One of the masses is connected by a spring with constant *k* to a point at the top of the incline. At t = 0, the string is cut, and the mass connected to the spring begins to oscillate.
 - a. Determine the period of the oscillations
 - b. Determine the amplitude of the oscillations
 - In terms of the given quantities, write an expression for the velocity of the oscillating mass at an arbitrary time

a. Gravity doesn't change pearly
$$T = 22\sqrt{m/k}$$

b. Fr. Fr. Fr. Fr. = fg sin le

Fr. = 2prg sin le

 $X_1 = \frac{2mq \sin l}{k} - \frac{before}{k}$

$$X_1 = \frac{2mq \sin \theta}{16}$$
 - heling $X_2 = \frac{2mq \sin \theta}{k}$ - after $\frac{1}{k}$

