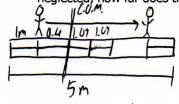

The can't grantee the according of the answers to this without since I ten't have access to the answers. However, the following the grotion should be comect. Once of solving the grotion should be comect. Name Unit 1 Review Worksheet
1 mil Mal Qualificht Stilled IR Chief.
MILES OF SOLUTION THE SOLUTION Name
Unit 1 Review Worksheet
Force Equilibrium / Torque Equilibrium / Center of Mass
1. Two men are carrying a uniform ladder that is 20 ft long and weighs 200 lb. If one man can lift a maximum of 80 lb and lifts at one end, at what point should the other man lift? $(30/b)(10ff) \qquad (30/b)(10ff) = (120/b)(2)$
n = 6.66 3.3 ft from the other end
2. A rock of weight W is hung as shown at right. What is the tension in each of the strings shown? (Get to simplest form)
T_2 Sin30 + 13 SM60 = W T_2 Sin30 = T_3 (U560)
$T_{s} = 0.5777_{s}$ $Alue bra!$
If you thank The standard standard to the figure below, a box is shown at rest on an angled ramp. The ramp angle is 41 degrees, the
3. In the figure below, a box is shown at rest on an angled ramp. The ramp angle is 41 degrees, the block has a mass of 6.0 kg, and the coefficient of static friction between the block and the ramp
is 0.91. Based on the information provided: a. What is the maximum amount of force the block could withstand before it begins to slide? Assume a person is entered into the diagram and is pushing the box either up or down the ramp (you must decide which), but parallel to the slope of the ramp.
Push, ny up the vamp. $N = \text{pny}(\text{us4})$ Fine diagram $F = F_t + \text{pny}(\text{us4})$ Fine diagram $F = F_t + \text{pny}(\text{us4})$
$F = F_f + mysn41 $ $F = \frac{1}{4} + mysn41 $
$f_{t} = (0.41)(p_{t}y_{t}w_{t})$
$F_{\perp} = (0.91)(\text{my usul})$ $F_{\perp} = (0.91)(\text{my usul}) + \text{my snul}.$ $F = 73.959 \text{ N}$ $\Theta = 41 \text{ degrees}$
F = 73.959 N


- 4. A uniform horizontal beam with a length of 8.0 m and a weight of 200 N is attached to a wall by a pin connection. Its far end is supported by a cable that makes an angle of 53 degrees with the beam. (See figure below). A person of weight 600 N stands a distance of 2.0 m from the wall.

5. A uniform ladder of length L rests against a smooth, vertical wall. The mass of the ladder is m_s and the coefficient of static friction between the ladder and the ground is $u_s = 0.40$. Find the minimum angle at which the ladder does not slip.

6. A man of mass 80 kg stands up in a 30 kg canoe of length 5 m. He walks from a point 1 m from one $|\mathcal{P} = \mathcal{O}$, $|\mathcal{P}|$ end to a point 1 m from the other end. If resistance to motion of the canoe in the water can be neglected, how far does the canoe move during this process?

1.09x2 = 2.132m