\qquad

Conservation of Energy

1. A 60 kg diver jumps from a 10 meter platform into a pool below.
a. What is her velocity at impact?

b. If she were to come to rest 5.0 meters below the water's surface, how much of a resistance force was present on the diver by the water?

2. A bead slides without friction around a loop-the-loop. If the bead is released from a height $h=3.40 R$, what is its speed at point A ?
a. Solve speed in terms of g and R .

How large is the normal force on it if its mass is 4.80 g ? $\square \mathrm{N}$ (downward)

3. A lab group is tasked with experimentally solving for the spring constant k of a spring at their lab station. Their initial idea is written below:

Hang an object of known mass from a vertical spring and measure both how much the spring is stretched (x) and the height of the object above the floor (h). Set $U g=U s$ and solve for k !

A - What is incorrect about this lab process?
B - Develop your own procedure for experimentally solving for the spring constant of a spring that would work.
4. A 10.0 kg block is released from point A. The track is frictionless except for the portion $B C$, with a length of 6.00 m . The block travels down the track, hits a spring of force constant $k=2100 \mathrm{~N} / \mathrm{m}$, and compresses it 0.400 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between surface $B C$ and the block.

5. A 3.00 kg block starts from rest and slides a distance d down a frictionless 30.0° incline. While sliding, it comes into contact with an unstressed spring of negligible mass. The mass slides an additional 0.194 m as it is brought momentarily to rest by compression of the spring ($k=400 \mathrm{~N} / \mathrm{m}$). Find the initial separation d between mass and spring.

