Name_____

Worksheet #1

Newton's 2nd Law

- 1. A car is traveling at 22.8 m/s on a horizontal highway.
 - a. If the coefficient of friction between road and tires on a rainy day is 0.105, what is the minimum distance in which the car will stop?

254	
	m

2. Three blocks are in contact with each other on a frictionless, horizontal surface. A horizontal force **F** is applied to m_1 . If $m_1 = 2.00$ kg, $m_2 = 3.00$ kg, $m_3 = 6.00$ kg, and F = 16.0 N, draw a separate free-body diagram for each block to the right of the image.

- a. Find the acceleration of the blocks 1.45 m/s² (to the right)
- b. Find the magnitude of the contact force between m_1 and m_2 . 13.1 N
- c. Find the magnitude of the contact force between m_2 and m_3 . 8.73 N

- 3. A 5.00 kg block is placed on top of a 10.0 kg block. A horizontal force of 45.0 N is applied to the 10.0 kg block, and the 5.00 kg block is tied to the wall. The coefficient of kinetic friction between all surfaces is 0.190.
 - a. Draw a force diagram for each block.

5kg Block:	10kg Block:
•	J

b. Determine the tension in the string and the magnitude of the acceleration of the 10 kg block.

4. Two masses are tied together by a string of negligible mass. The block of mass *m* is set on a table, while the block of mass 3m is draped over a frictionless pulley. Assuming the coefficient of friction between the table and block *m* is u_k :

- a. Write an expression for the coefficient of kinetic friction in terms of a and g.
- b. Write an expression for the tension force acting on the block of mass 3m in terms of m, a, and g.