\qquad
Worksheet \#1

Newton's $2^{\text {nd }}$ Law

1. A car is traveling at $22.8 \mathrm{~m} / \mathrm{s}$ on a horizontal highway.
a. If the coefficient of friction between road and tires on a rainy day is 0.105 , what is the minimum distance in which the car will stop?
```
254
```

m
2. Three blocks are in contact with each other on a frictionless, horizontal surface. A horizontal force \mathbf{F} is applied to m_{1}. If $m_{1}=2.00 \mathrm{~kg}, m_{2}=3.00 \mathrm{~kg}, m_{3}=6.00 \mathrm{~kg}$, and $\mathrm{F}=16.0 \mathrm{~N}$, draw a separate free-body diagram for each block to the right of the image.

a. Find the acceleration of the blocks
1.45 $\mathrm{m} / \mathrm{s}^{2}$ (to the right)
b. Find the magnitude of the contact force between m_{1} and m_{2}. 13.1 N
c. Find the magnitude of the contact force between m_{2} and m_{3}.
3. A 5.00 kg block is placed on top of a 10.0 kg block. A horizontal force of 45.0 N is applied to the 10.0 kg block, and the 5.00 kg block is tied to the wall. The coefficient of kinetic friction between all surfaces is 0.190 .
a. Draw a force diagram for each block.

b. Determine the tension in the string and the magnitude of the acceleration of the 10 kg block.

4. Two masses are tied together by a string of negligible mass. The block of mass m is set on a table, while the block of mass $3 m$ is draped over a frictionless pulley. Assuming the coefficient of friction between the table and block m is u_{k} :

a. Write an expression for the coefficient of kinetic friction in terms of a and g.
b. Write an expression for the tension force acting on the block of mass $3 m$ in terms of m, a, and g .

