\qquad

Unit 4: Homework Questions \#3

Conservation of Momentum

1. In a football game, a 89.7 kg fullback running east with a speed of $4.96 \mathrm{~m} / \mathrm{s}$ is tackled by a 94.9 kg linebacker running north with a speed of $3.09 \mathrm{~m} / \mathrm{s}$.
a. Calculate the speed and direction of the players just after the tackle.
$2.89 \mathrm{~m} / \mathrm{s}$ at 33.4 。
b. Determine the mechanical energy lost as a result of the collision.
```
785.5
J
```

2. Two blocks of masses M and $3 M$ are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks together is burned; after that happens, the block of mass $3 M$ moves to the right with a speed of 2.05 m / s.
(a) What is the velocity of the block of mass M ?
```
-6.15 m/s
```


(a)
(b) Assuming that the collision was perfectly elastic, find the system's original potential energy taking $M=0.390 \mathrm{~kg}$.

```
9.83
```


3. A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m . It rebounds from the floor to reach a height of 0.800 m . What impulse was given to the ball by the floor?

1.07

4. A small black disc (1.2 kg) travels with a constant velocity of $2.0 \mathrm{~m} / \mathrm{s}$ due east. A second larger, gray disc ($\mathrm{m}=3.0 \mathrm{~kg}$) travels with its own constant velocity of $1.4 \mathrm{~m} / \mathrm{s}$ in a direction of 20 degrees north of west. If the two discs have a Velcro ring around them and stick together, determine how fast and in which direction they will travel upon sticking together.

0.503		47

5. A 2-kilogram block and an 8-kilogram block are both attached to an ideal spring (for which $\mathrm{k}=200 \mathrm{~N} / \mathrm{m}$) and both are initially at rest on a horizontal frictionless surface, as shown in the diagram above.

In an initial experiment, a 100-gram (0.1 kg) ball of clay is thrown at the 2-kilogram block. The clay is moving horizontally with speed v when it hits and sticks to the block. The 8 -kilogram block is held still by a removable stop. As a result, the spring compresses a maximum distance of 0.4 meters.

*NO ANSWERS GIVEN

a. Calculate the energy stored in the spring at maximum compression.
b. Calculate the speed of the clay ball and 2-kilogram block immediately after the clay sticks to the block but before the spring compresses significantly.
c. Calculate the initial speed v of the clay.

In a second experiment, an identical ball of clay is thrown at another identical 2-kilogram block, but this time the stop is removed so that the 8-kilogram block is free to move.
d. State whether the maximum compression of the spring will be greater than, equal to, or less than 0.4 meter. Explain briefly.

